Sign on

SAO/NASA ADS Astronomy Abstract Service


· Find Similar Abstracts (with default settings below)
· Full Refereed Journal Article (PDF/Postscript)
· Full Refereed Scanned Article (GIF)
· References in the article
· Citations to the Article (90) (Citation History)
· Refereed Citations to the Article
· Reads History
·
· Translate This Page
Title:
Exact Solutions for Steady State, Spine, and Fan Magnetic Reconnection
Authors:
Craig, I. J. D.; Fabling, R. B.
Publication:
Astrophysical Journal v.462, p.969 (ApJ Homepage)
Publication Date:
05/1996
Origin:
APJ
Astronomy Keywords:
MAGNETOHYDRODYNAMICS: MHD, PLASMAS, SUN: ACTIVITY
DOI:
10.1086/177210
Bibliographic Code:
1996ApJ...462..969C

Abstract

The problem of steady state, incompressible magnetic reconnection in three dimensions is addressed. It is shown that exact reconnection solutions can be constructed by superposing nonlinear disturbances onto three-dimensional magnetic X-points. There are two distinct families of reconnection solutions. These can be understood in terms of the eigenstructure of the null, that is, in terms of the "spine" curves and "fan" surfaces that define the separatrices of the field. One family of solutions is driven by disturbances in the fan and involves quasi-cylindrical current structures aligned to the axis of the spine; the other is associated with advection across the spine and a global current sheet aligned to the fan. Although both spine and fan solutions reduce to the two-dimensional analytic, shear-flow solutions of Craig & Henton, the three-dimensional spine current formulation allows far richer reconnective current structures.

Printing Options

Print whole paper
Print Page(s) through

Return 600 dpi PDF to Acrobat/Browser. Different resolutions (200 or 600 dpi), formats (Postscript, PDF, etc), page sizes (US Letter, European A4, etc), and compression (gzip,compress,none) can be set through the Printing Preferences



More Article Retrieval Options

HELP for Article Retrieval


Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)

  New!

Find Similar Abstracts:

Use: Authors
Title
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
Physics
arXiv e-prints