Sign on

SAO/NASA ADS Astronomy Abstract Service

· Find Similar Abstracts (with default settings below)
· Full Refereed Journal Article (PDF/Postscript)
· Full Refereed Scanned Article (GIF)
· References in the article
· Citations to the Article (181) (Citation History)
· Refereed Citations to the Article
· SIMBAD Objects (2)
· Also-Read Articles (Reads History)
· Translate This Page
Assessment of the Polycyclic Aromatic Hydrocarbon--Diffuse Interstellar Band Proposal
Salama, F.; Bakes, E. L. O.; Allamandola, L. J.; Tielens, A. G. G. M.
Astrophysical Journal v.458, p.621 (ApJ Homepage)
Publication Date:
Astronomy Keywords:
Bibliographic Code:


The potential link between neutral and/or ionized polycyclic aromatic hydrocarbons (PAHs) and the diffuse interstellar band (DIB) carriers is examined. Based on the study of the general physical and chemical properties of PAHs, an assessment is made of their possible contribution to the DIB carriers. It is found that, under the conditions reigning in the diffuse interstellar medium, PAHs can be present in the form of neutral molecules as well as positive and/or negative ions. The charge distribution of small PAHs is dominated, however, by two charge states at one time with compact PAHs present only in the neutral and cationic forms. Each PAH has a distinct spectral signature depending on its charge state. Moreover, the spectra of ionized PAHs are always clearly dominated by a single band in the DIB spectral range. In the case of compact PAH ions, the strongest absorption band is of type A (i.e., the band is broad, falls in the high-energy range of the spectrum, and possesses a large oscillator strength), and seems to correlate with strong and broad DIBs. For noncompact PAH ions, the strongest absorption band is of type I (i.e., the band is narrow, falls in the low-energy range of the spectrum, and possesses a small oscillator strength), and seems to correlate with weak and narrow DIBs. Potential molecular size and structure constraints for interstellar PAHs are derived by comparing known DIB characteristics to the spectroscopic properties of PAHs. It is found that (i) only neutral PAHs larger than about 30 carbon atoms could, if present, contribute to the DIBs. (ii) For compact PAHs, only ions with less than about 250 carbon atoms could, if present, contribute to the DIBs. (iii) The observed distribution of the DIBs between strong/moderate and broad bands on the one hand and weak and narrow bands on the other can easily be interpreted in the context of the PAH proposal by a distribution of compact and noncompact PAH ions, respectively. A plausible correlation between PAH charge states and DIB "families" is thus provided by the PAH-DIB proposal. Following this proposal, DIB families would reflect conditions within a cloud which locally determine the relative importance of cations, anions, and neutral species, rather than tracers of a specific species. Observational predictions are given to establish the viability of the PAH hypothesis. It is concluded that small PAH ions are very promising candidates as DIB carriers provided their population is dominated by a finite number (100-200) of species. A key test for the PAH proposal, consisting of laboratory and astronomical investigations in the ultraviolet range, is called for.

Printing Options

Print whole paper
Print Page(s) through

Return 600 dpi PDF to Acrobat/Browser. Different resolutions (200 or 600 dpi), formats (Postscript, PDF, etc), page sizes (US Letter, European A4, etc), and compression (gzip,compress,none) can be set through the Printing Preferences

More Article Retrieval Options

HELP for Article Retrieval

Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)

Find Similar Abstracts:

Use: Authors
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
arXiv e-prints