Sign on

SAO/NASA ADS Astronomy Abstract Service


· Find Similar Abstracts (with default settings below)
· Full Refereed Journal Article (PDF/Postscript)
· Full Refereed Scanned Article (GIF)
· arXiv e-print (arXiv:astro-ph/9410080)
· References in the article
· Citations to the Article (136) (Citation History)
· Refereed Citations to the Article
· Also-Read Articles (Reads History)
·
· Translate This Page
Title:
Wiener Reconstruction of the Large-Scale Structure
Authors:
Zaroubi, S.; Hoffman, Y.; Fisher, K. B.; Lahav, O.
Publication:
Astrophysical Journal v.449, p.446 (ApJ Homepage)
Publication Date:
08/1995
Origin:
APJ; KNUDSEN
Astronomy Keywords:
COSMOLOGY: LARGE-SCALE STRUCTURE OF UNIVERSE, COSMOLOGY: THEORY
DOI:
10.1086/176070
Bibliographic Code:
1995ApJ...449..446Z

Abstract

The formalism of Wiener filtering is developed here for the purpose of reconstructing the large-scale structure of the universe from noisy, sparse, and incomplete data. The method is based on a linear minimum variance solution, given data and an assumed prior model which specifies the covariance matrix of the field to be reconstructed. While earlier applications of the Wiener filer have focused on estimation, namely suppressing the noise in the measured quantities, we extend the method here to perform both prediction and dynamical reconstruction. The Wiener filter is used to predict the values of unmeasured quantities, such as the density field in unsampled regions of space, or to deconvolve blurred data. The method is developed, within the context of linear gravitational instability theory, to perform dynamical reconstruction of one field which is dynamically related to some other observed field. This is the case, for example, in the reconstruction of the real space galaxy distribution from its redshift distribution or the prediction of the radial velocity field from the observed density field.

When the field to be reconstructed is a Gaussian random field, such as the primordial perturbation field predicted by the canonical model of cosmology, the Wiener filter can be pushed to its fullest potential. In such a case the Wiener estimator coincides with the Bayesian estimator designed to maximize the posterior probability. The Wiener filter can be also derived by assuming a quadratic regularization function, in analogy with the "maximum entropy" method. The mean field obtained by the minimal variance solution can be supplemented with constrained realizations of the Gaussian field to create random realizations of the residual from the mean.


Printing Options

Print whole paper
Print Page(s) through

Return 600 dpi PDF to Acrobat/Browser. Different resolutions (200 or 600 dpi), formats (Postscript, PDF, etc), page sizes (US Letter, European A4, etc), and compression (gzip,compress,none) can be set through the Printing Preferences



More Article Retrieval Options

HELP for Article Retrieval


Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)

  New!

Find Similar Abstracts:

Use: Authors
Title
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
Physics
arXiv e-prints