Sign on
ADS Classic will be deprecated in May 2019 and retired in October 2019. Please redirect your searches to the new ADS modern form or the classic form. More info can be found on our blog.

SAO/NASA ADS Astronomy Abstract Service


· Find Similar Abstracts (with default settings below)
· Full Refereed Journal Article (PDF/Postscript)
· Full Refereed Scanned Article (GIF)
· On-line Data
· References in the article
· Citations to the Article (437) (Citation History)
· Refereed Citations to the Article
· SIMBAD Objects (34)
· Also-Read Articles (Reads History)
·
· Translate This Page
Title:
Rnu-dependent optical and near-ultraviolet extinction
Authors:
O'Donnell, James E.
Affiliation:
AA(University of Wisconsin-Madison, Madison, WI, US)
Publication:
Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 422, no. 1, p. 158-163 (ApJ Homepage)
Publication Date:
02/1994
Category:
Astrophysics
Origin:
STI
NASA/STI Keywords:
Interstellar Extinction, Light (Visible Radiation), Near Infrared Radiation, Ultraviolet Radiation, Astronomical Photometry, Iue
DOI:
10.1086/173713
Bibliographic Code:
1994ApJ...422..158O

Abstract

We have derived extinctions A(lambda)/A(V) at the wavelengths of the uvby filters for 22 stars, with a range of values of Rnu, from the sample of Cardelli, Clayton, & Mathis (1989, hereafter CCM). We have fit these extinctions, and also UBVRIJHKL, IUE and ANS extinction measurements, with linear relations A(lambda)/A/(V) = a+b/Rnu and fit a and b as a function of x(=1/lambda) with polynomials to obtain an Rnu-dependent mean extinction law (A(x)/A(V) = a(x) + b(x)/Rnu)in the optical and near-ultraviolet (1.1/micrometer less than or equal to 3.3/micrometer). This law is virtually identical to the CCM extinction law for large values of Rnu(Rnu approximately 5) but is slightly lower in the near-ultraviolet for smaller Rnu (Rnu approximately 3). The extinction law presented here agrees much better with a high-resolution extinction curve for the diffuse interstellar medium (Rnu approximately 3.1), presented by Bastiaansen (1992), than CCM. The deviations of individual extinction curves from the mean are dominated by observational errors. The wavelength resolution of this work is not high enough to show evidence for or against the existence of very broad structure in optical extinction curves.

Printing Options

Print whole paper
Print Page(s) through

Return 600 dpi PDF to Acrobat/Browser. Different resolutions (200 or 600 dpi), formats (Postscript, PDF, etc), page sizes (US Letter, European A4, etc), and compression (gzip,compress,none) can be set through the Printing Preferences



More Article Retrieval Options

HELP for Article Retrieval


Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)


Find Similar Abstracts:

Use: Authors
Title
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
Physics
arXiv e-prints