Sign on

SAO/NASA ADS Astronomy Abstract Service

· Find Similar Abstracts (with default settings below)
· Full Refereed Journal Article (PDF/Postscript)
· Full Refereed Scanned Article (GIF)
· References in the article
· Citations to the Article (67) (Citation History)
· Refereed Citations to the Article
· SIMBAD Objects (35)
· Reads History
· Translate This Page
Is the solar system entering a nearby interstellar cloud
Vidal-Madjar, A.; Laurent, C.; Bruston, P.; Audouze, J.
AA(CNRS, Laboratoire de Physique Stellaire et Planetaire, Verrieres-le-Buisson, Essonne, France), AB(CNRS, Laboratoire de Physique Stellaire et Planetaire, Verrieres-le-Buisson, Essonne, France), AC(CNRS, Laboratoire de Physique Stellaire et Planetaire, Verrieres-le-Buisson, Essonne, France), AD(Meudon Observatoire, Hauts-de-Seine; Paris XI, Universite, Orsay, Essonne, France)
Astrophysical Journal, Part 1, vol. 223, July 15, 1978, p. 589-600. (ApJ Homepage)
Publication Date:
NASA/STI Keywords:
Astronomical Models, Deuterium, Hydrogen Atoms, Interstellar Gas, Solar System, Abundance, Early Stars, Gas Density, Interstellar Extinction
Bibliographic Code:


Observations indicating a hydrogen density gradient in the vicinity of the solar system are reviewed, particularly observations of an anisotropy in the far-UV flux around 950 A from the brightest and closest O and B stars as well as a variation in the local D/H ratio along the lines of sight to Alpha Cen and Alpha Aur. Possible mechanisms that may strongly affect the observed D/H ratio on a very small scale are considered, selected radiation pressure is proposed as the most likely mechanism for deuterium separation, and it is shown that this mechanism would be effective only if the density gradient of the nearby interstellar medium has remained stable for at least about 10 million years. This time scale is taken to imply the existence of a nearby (less than 2 pc distant) interstellar cloud. Observational arguments in favor of such a cloud are presented, and implications of the presence of a nearby cloud are discussed, including possible changes in terrestrial climate. It is suggested that the postulated interstellar cloud should encounter the solar system at some unspecified time in the 'near' future and might have a drastic influence on terrestrial climate in the next 10,000 years.

Printing Options

Print whole paper
Print Page(s) through

Return 600 dpi PDF to Acrobat/Browser. Different resolutions (200 or 600 dpi), formats (Postscript, PDF, etc), page sizes (US Letter, European A4, etc), and compression (gzip,compress,none) can be set through the Printing Preferences

More Article Retrieval Options

HELP for Article Retrieval

Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)


Find Similar Abstracts:

Use: Authors
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
arXiv e-prints