Sign on
ADS Classic is now deprecated. It will be completely retired in October 2019. This page will automatically redirect to the new ADS interface at that point.

SAO/NASA ADS Astronomy Abstract Service


· Find Similar Abstracts (with default settings below)
· Electronic Refereed Journal Article (HTML)
· Full Refereed Journal Article (PDF/Postscript)
· arXiv e-print (arXiv:1710.07478)
· References in the article
· Citations to the Article (15) (Citation History)
· Refereed Citations to the Article
· Also-Read Articles (Reads History)
·
· Translate This Page
Title:
Calibration and Stokes Imaging with Full Embedded Element Primary Beam Model for the Murchison Widefield Array
Authors:
Sokolowski, M.; Colegate, T.; Sutinjo, A. T.; Ung, D.; Wayth, R.; Hurley-Walker, N.; Lenc, E.; Pindor, B.; Morgan, J.; Kaplan, D. L.; Bell, M. E.; Callingham, J. R.; Dwarakanath, K. S.; For, Bi-Qing; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Johnston-Hollitt, M.; Kapinska, A. D.; McKinley, B.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wu, C.; Zheng, Q.
Affiliation:
AA(International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Redfern, NSW, Australia), AB(International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia), AC(International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia), AD(International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia), AE(International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Redfern, NSW, Australia 0000-0002-6995-4131), AF(International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia), AG(ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Redfern, NSW, Australia; Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia 0000-0002-9994-1593), AH(ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Redfern, NSW, Australia; School of Physics, The University of Melbourne, Parkville, VIC 3010, Australia), AI(International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia), AJ(Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA 0000-0001-6295-2881), AK(ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Redfern, NSW, Australia; CSIRO Astronomy and Space Science, Marsfield, NSW 2122, Australia), AL(ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Redfern, NSW, Australia; Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia; CSIRO Astronomy and Space Science, Marsfield, NSW 2122, Australia), AM(Raman Research Institute, Bangalore 560080, India), AN(International Centre for Radio Astronomy Research, University of Western Australia, Crawley 6009, Australia), AO(ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Redfern, NSW, Australia; Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia; Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St, ON M5S 3H4, Canada 0000-0002-3382-9558), AP(International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Redfern, NSW, Australia), AQ(School of Chemical & Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand), AR(School of Chemical & Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand; Peripety Scientific Ltd., PO Box 11355 Manners Street, Wellington 6142, New Zealand), AS(ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Redfern, NSW, Australia; International Centre for Radio Astronomy Research, University of Western Australia, Crawley 6009, Australia), AT(ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Redfern, NSW, Australia; School of Physics, The University of Melbourne, Parkville, VIC 3010, Australia), AU(Netherlands Institute for Radio Astronomy (ASTRON), PO Box 2, 7990 AA Dwingeloo, The Netherlands), AV(ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Redfern, NSW, Australia; School of Physics, The University of Melbourne, Parkville, VIC 3010, Australia), AW(ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Redfern, NSW, Australia; International Centre for Radio Astronomy Research, University of Western Australia, Crawley 6009, Australia 0000-0002-8057-0294), AX(International Centre for Radio Astronomy Research, University of Western Australia, Crawley 6009, Australia), AY(School of Chemical & Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand; Peripety Scientific Ltd., PO Box 11355 Manners Street, Wellington 6142, New Zealand)
Publication:
Publications of the Astronomical Society of Australia, Volume 34, id.e062 13 pp. (PASA Homepage)
Publication Date:
11/2017
Origin:
CUP
Astronomy Keywords:
instrumentation: interferometers
Abstract Copyright:
2017: Astronomical Society of Australia
DOI:
10.1017/pasa.2017.54
Bibliographic Code:
2017PASA...34...62S

Abstract

The Murchison Widefield Array (MWA), located in Western Australia, is one of the low-frequency precursors of the international Square Kilometre Array (SKA) project. In addition to pursuing its own ambitious science programme, it is also a testbed for wide range of future SKA activities ranging from hardware, software to data analysis. The key science programmes for the MWA and SKA require very high dynamic ranges, which challenges calibration and imaging systems. Correct calibration of the instrument and accurate measurements of source flux densities and polarisations require precise characterisation of the telescope's primary beam. Recent results from the MWA GaLactic Extragalactic All-sky Murchison Widefield Array (GLEAM) survey show that the previously implemented Average Embedded Element (AEE) model still leaves residual polarisations errors of up to 10-20% in Stokes Q. We present a new simulation-based Full Embedded Element (FEE) model which is the most rigorous realisation yet of the MWA's primary beam model. It enables efficient calculation of the MWA beam response in arbitrary directions without necessity of spatial interpolation. In the new model, every dipole in the MWA tile (4 × 4 bow-tie dipoles) is simulated separately, taking into account all mutual coupling, ground screen, and soil effects, and therefore accounts for the different properties of the individual dipoles within a tile. We have applied the FEE beam model to GLEAM observations at 200-231 MHz and used false Stokes parameter leakage as a metric to compare the models. We have determined that the FEE model reduced the magnitude and declination-dependent behaviour of false polarisation in Stokes Q and V while retaining low levels of false polarisation in Stokes U.
Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)


Find Similar Abstracts:

Use: Authors
Title
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
Physics
arXiv e-prints