Sign on
ADS Classic is now deprecated. It will be completely retired in October 2019. Please redirect your searches to the new ADS modern form or the classic form. More info can be found on our blog.

SAO/NASA ADS Astronomy Abstract Service


· Find Similar Abstracts (with default settings below)
· Full Printable Article (PDF/Postscript)
· Scanned Article (GIF)
· Table of Contents
· References in the Article
· Citations to the Article (3) (Citation History)
· Refereed Citations to the Article
· Also-Read Articles (Reads History)
·
· Translate This Page
Title:
SEEDS: Strategic Explorations of Exoplanets and Disks with Subaru
Authors:
Tamura, Motohide
Affiliation:
AA(Dept. of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan )
Publication:
Exploring the Formation and Evolution of Planetary Systems, Proceedings of the International Astronomical Union, IAU Symposium, Volume 299, pp. 12-16
Publication Date:
01/2014
Origin:
CUP
Keywords:
exoplanet, circumstellar disks, coronagraph, infrared,
Abstract Copyright:
(c) 2014: Copyright © International Astronomical Union 2013
DOI:
10.1017/S1743921313007679
Bibliographic Code:
2014IAUS..299...12T

Abstract

SEEDS is the first Subaru Strategic Program, whose aim is to conduct a direct imaging survey for giant planets as well as protoplanetary/debris disks at a few to a few tens of AU region around 500 nearby solar-type or more massive young stars devoting 120 Subaru nights for 5 years. The targets are composed of five categories spanning the ages of ~1 Myr to ~1 Gyr. Some RV-planet targets with older ages are also observed. The survey employs the new high-contrast instrument HiCIAO, a successor of the previous NIR coronagraph camera CIAO for the Subaru Telescope. We describe the outline of this survey and present its first three years of results. The survey has published ~20 refereed papers by now. The main results are as follows: (1) detection and characterization of the most unequivocal and lowest-mass planet via direct imaging. (2) detection of a super-Jupiter around the most massive star ever imaged, (3) detection of companions around a retrograde exoplanet system, which supports the Kozai mechanism for the origin of retrograde orbit (not in this proceedings, but see Narita et al. 2010, 2012). We also report (4) the discovery of unprecedentedly detailed structures of more than a dozen of protoplanetary disks and some debris disks. The detected structures such as wide gaps and spirals arms of a Solar-system scale could be signpost of planet.

Printing Options

Print whole paper
Print Page(s) through

Return 600 dpi PDF to Acrobat/Browser. Different resolutions (200 or 600 dpi), formats (Postscript, PDF, etc), page sizes (US Letter, European A4, etc), and compression (gzip,compress,none) can be set through the Printing Preferences



More Article Retrieval Options

HELP for Article Retrieval


Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)


Find Similar Abstracts:

Use: Authors
Title
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
Physics
arXiv e-prints