Sign on
ADS Classic is now deprecated. It will be completely retired in October 2019. Please redirect your searches to the new ADS modern form or the classic form. More info can be found on our blog.

SAO/NASA ADS Astronomy Abstract Service

· Find Similar Abstracts (with default settings below)
· Full Printable Article (PDF/Postscript)
· Scanned Article (GIF)
· Table of Contents
· References in the Article
· Citations to the Article (6) (Citation History)
· Refereed Citations to the Article
· Also-Read Articles (Reads History)
· Translate This Page
Detecting and Characterizing Exoplanets with Direct Imaging: Past, Present, and Future
Biller, Beth
AA(Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany )
Exploring the Formation and Evolution of Planetary Systems, Proceedings of the International Astronomical Union, IAU Symposium, Volume 299, pp. 1-11
Publication Date:
planetary systems, instrumentation: adaptive optics, techniques: high angular resolution,
Abstract Copyright:
(c) 2014: Copyright © International Astronomical Union 2013
Bibliographic Code:


The last decade has yielded the first images of exoplanets, considerably advancing our understanding of the properties of young giant planets. In this talk I will discuss current results from ongoing direct imaging efforts as well as future prospects for detection and characterization of exoplanets via high contrast imaging. Direct detection, and direct spectroscopy in particular, have great potential for advancing our understanding of extrasolar planets. In combination with other methods of planet detection, direct imaging and spectroscopy will allow us to eventually: 1) study the physical properties of exoplanets (colors, temperatures, etc.) in depth and 2) fully map out the architecture of typical planetary systems. Direct imaging has offered us the first glimpse into the atmospheric properties of young high-mass (3-10 M Jup ) exoplanets. Deep direct imaging surveys for exoplanets have also yielded the strongest constraints to date on the statistical properties of wide giant exoplanets. A number of extremely high contrast exoplanet imaging instruments have recently come online or will come online within the next year (including Project 1640, SCExAO, SPHERE, GPI, among others). I will discuss future prospects with these instruments.

Printing Options

Print whole paper
Print Page(s) through

Return 600 dpi PDF to Acrobat/Browser. Different resolutions (200 or 600 dpi), formats (Postscript, PDF, etc), page sizes (US Letter, European A4, etc), and compression (gzip,compress,none) can be set through the Printing Preferences

More Article Retrieval Options

HELP for Article Retrieval

Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)

Find Similar Abstracts:

Use: Authors
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
arXiv e-prints