Sign on

SAO/NASA ADS Astronomy Abstract Service

· Find Similar Abstracts (with default settings below)
· Full Printable Article (PDF/Postscript)
· Scanned Article (GIF)
· Table of Contents
· References in the Article
· Citations to the Article (1) (Citation History)
· Refereed Citations to the Article
· Reads History
· Translate This Page
Better Understanding of SN Ia from Near Infrared Observations
Kirshner, Robert P.
AA(Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA)
Binary Paths to Type Ia Supernovae Explosions, Proceedings of the International Astronomical Union, IAU Symposium, Volume 281, p. 1-8
Publication Date:
supernovae: general, cosmology: distance scale, cosmological parameters,
Abstract Copyright:
(c) 2013: Copyright © International Astronomical Union 2013
Bibliographic Code:


Type Ia supernovae (SN Ia) are explosions of white dwarfs whose distances can be measured to a precision of ~5% using luminosity information that is encoded in the light curve shape. This property has been very successfully exploited to measure the history of cosmic expansion and to infer the presence of dark energy. But to learn the properties of dark energy and determine whether it is different from the cosmological constant demands higher precision and better accuracy than optical light curves alone can provide. The largest systematic uncertainties come from light curve fitters, photometric calibration errors, and from poor knowledge of the scattering properties of dust along the line of sight. Efforts to use SN Ia spectra as luminosity indicators have had some success, but have not produced a big step forward. Fortunately, observations of SN Ia in the near infrared (NIR), from 1 to 2 microns, offer a very promising path to better knowledge of the Hubble constant, improved constraints on dark energy, and, possibly, a route to discriminating the progenitor paths for SN Ia explosions.

Printing Options

Print whole paper
Print Page(s) through

Return 600 dpi PDF to Acrobat/Browser. Different resolutions (200 or 600 dpi), formats (Postscript, PDF, etc), page sizes (US Letter, European A4, etc), and compression (gzip,compress,none) can be set through the Printing Preferences

More Article Retrieval Options

HELP for Article Retrieval

Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)


Find Similar Abstracts:

Use: Authors
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
arXiv e-prints