Sign on
ADS Classic is now deprecated. It will be completely retired in October 2019. This page will automatically redirect to the new ADS interface at that point.

SAO/NASA ADS Astronomy Abstract Service


· Find Similar Abstracts (with default settings below)
· Full Printable Article (PDF/Postscript)
· Scanned Article (GIF)
· arXiv e-print (arXiv:1104.2898)
· Table of Contents
· References in the Article
· Citations to the Article (2) (Citation History)
· Refereed Citations to the Article
· Also-Read Articles (Reads History)
·
· Translate This Page
Title:
The debris disk - terrestrial planet connection
Authors:
Raymond, Sean N.; Armitage, Philip J.; Moro-Martín, Amaya; Booth, Mark; Wyatt, Mark C.; Armstrong, John C.; Mandell, Avi M.; Selsis, Franck
Affiliation:
AA(Université de Bordeaux, Observatoire Aquitain des Sciences de l'Univers, 2 rue de l'Observatoire, BP 89, F-33271 Floirac Cedex, France ; CNRS, UMR 5804, Laboratoire d'Astrophysique de Bordeaux, 2 rue de l'Observatoire, BP 89, F-33271 Floirac Cedex, France), AB(JILA, University of Colorado, Boulder CO 80309, USA; Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder CO 80309, USA), AC(Departamento de Astrofisica, CAB (CSIC-INTA), Instituto Nacional de Tecnica Aeroespacial, Torrejon de Ardoz, 28850, Madrid, Spain; Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544, USA), AD(Institute of Astronomy, Cambridge University, Madingley Road, Cambridge, UK), AE(Institute of Astronomy, Cambridge University, Madingley Road, Cambridge, UK), AF(Department of Physics, Weber State University, Ogden, UT, USA), AG(NASA Goddard Space Flight Center, Code 693, Greenbelt, MD 20771, USA), AH(Université de Bordeaux, Observatoire Aquitain des Sciences de l'Univers, 2 rue de l'Observatoire, BP 89, F-33271 Floirac Cedex, France; CNRS, UMR 5804, Laboratoire d'Astrophysique de Bordeaux, 2 rue de l'Observatoire, BP 89, F-33271 Floirac Cedex, France)
Publication:
The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution, Proceedings of the International Astronomical Union, IAU Symposium, Volume 276, p. 82-88
Publication Date:
11/2011
Origin:
CUP
Keywords:
planetary systems: formation, debris disks, methods: n-body simulations
Abstract Copyright:
(c) 2011: Copyright © International Astronomical Union 2011
DOI:
10.1017/S1743921311019983
Bibliographic Code:
2011IAUS..276...82R

Abstract

The eccentric orbits of the known extrasolar giant planets provide evidence that most planet-forming environments undergo violent dynamical instabilities. Here, we numerically simulate the impact of giant planet instabilities on planetary systems as a whole. We find that populations of inner rocky and outer icy bodies are both shaped by the giant planet dynamics and are naturally correlated. Strong instabilities - those with very eccentric surviving giant planets - completely clear out their inner and outer regions. In contrast, systems with stable or low-mass giant planets form terrestrial planets in their inner regions and outer icy bodies produce dust that is observable as debris disks at mid-infrared wavelengths. Fifteen to twenty percent of old stars are observed to have bright debris disks (at lambda ~ 70mum) and we predict that these signpost dynamically calm environments that should contain terrestrial planets.

Printing Options

Print whole paper
Print Page(s) through

Return 600 dpi PDF to Acrobat/Browser. Different resolutions (200 or 600 dpi), formats (Postscript, PDF, etc), page sizes (US Letter, European A4, etc), and compression (gzip,compress,none) can be set through the Printing Preferences



More Article Retrieval Options

HELP for Article Retrieval


Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)


Find Similar Abstracts:

Use: Authors
Title
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
Physics
arXiv e-prints