Sign on
ADS Classic is now deprecated. It will be completely retired in October 2019. This page will automatically redirect to the new ADS interface at that point.

SAO/NASA ADS Astronomy Abstract Service

· Find Similar Abstracts (with default settings below)
· Full Printable Article (PDF/Postscript)
· Scanned Article (GIF)
· Table of Contents
· References in the Article
· Citations to the Article (1) (Citation History)
· Refereed Citations to the Article
· Reads History
· Translate This Page
Chemical abundances in planetary nebulae in three different galaxies
Peña, Miriam
AA(Instituto de Astronomía, Universidad Nacional Autónoma de México)
Chemical Abundances in the Universe: Connecting First Stars to Planets, Proceedings of the International Astronomical Union, IAU Symposium, Volume 265, p. 155-158
Publication Date:
planetary nebulae: general, galaxies: individual (NGC 3109, NGC 6822, NGC 300), ISM: abundances, etc
Bibliographic Code:


We analyze the PNe chemical behavior in three different galaxies, two dwarf irregulars and one spiral. Different behaviors are found. In the very low metallicity galaxy NGC 3109, PNe analyzed appear 0.39 dex O-richer than HII regions, while Ar/H ratio is, in average, 0.15 dex poorer. We interpret this as an evidence of significant O dredge-up in these LIMS, born in a very low metallicity environment. In NGC 6822, with a present metallicity 12+log O/H=8.06, two PN populations were found. A young one, with abundances similar to those in HII regions and an old population, with metallicities a factor of two lower. In this case no strong evidence for O dredge-up in LIMS is found. Therefore, metallicities lower than 12+log O/H =7.7 are required for an efficient O dredge-up. From our preliminary analysis of the abundances of PNe in NGC 300 we find that they are similar to the abundances in HII regions. Apparently, the PNe analyzed belong to a young population. Very similar abundance gradients, with galactocentric distance, are found for HII regions and for PNe.

Printing Options

Print whole paper
Print Page(s) through

Return 600 dpi PDF to Acrobat/Browser. Different resolutions (200 or 600 dpi), formats (Postscript, PDF, etc), page sizes (US Letter, European A4, etc), and compression (gzip,compress,none) can be set through the Printing Preferences

More Article Retrieval Options

HELP for Article Retrieval

Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)

Find Similar Abstracts:

Use: Authors
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
arXiv e-prints