Sign on

SAO/NASA ADS Astronomy Abstract Service


· Find Similar Abstracts (with default settings below)
· Electronic On-line Article (HTML)
· Full Printable Article (PDF/Postscript)
· Scanned Article (GIF)
· arXiv e-print (arXiv:astro-ph/0512500)
· Table of Contents
· References in the Article
· Citations to the Article (2) (Citation History)
· Refereed Citations to the Article
· Also-Read Articles (Reads History)
·
· Translate This Page
Title:
Observations of Pre-Stellar Cores
Authors:
Tafalla, M.
Publication:
Astrochemistry: Recent Successes and Current Challenges, Proceedings of the 231st Symposium of the International Astronomical Union held in Pacific Grove, California, USA, August 29-September 2, 2005, Edited by Lis, Dariusz C.; Blake, Geoffrey A.; Herbst, Eric. Cambridge: Cambridge University Press, 2005., pp.17-26
Publication Date:
08/2005
Origin:
CUP
DOI:
10.1017/S1743921306007009
Bibliographic Code:
2005IAUS..231...17T

Abstract

Our understanding of the physical and chemical structure of pre-stellar cores, the simplest star-forming sites, has significantly improved since the last IAU Symposium on Astrochemistry (South Korea, 1999). Research done over these years has revealed that major molecular species like CO and CS systematically deplete onto dust grains in the interior of pre-stellar cores, while species like N2H+ and NH3 survive in the gas phase and can usually be detected toward the core centers. Such a selective behavior of molecular species gives rise to a differentiated (onion-like) chemical composition, and manifests itself in molecular maps as a dichotomy between centrally peaked and ring-shaped distributions. From the point of view of star-formation studies, the identification of molecular inhomogeneities in cores helps to resolve past discrepancies between observations made using different tracers, and brings the possibility of self-consistent modelling of the core internal structure. Here I present recent work on determining the physical and chemical structure of two pre-stellar cores, L1498 and L1517B, using observations in a large number of molecules and Monte Carlo radiative transfer analysis. These two cores are typical examples of the pre-stellar core population, and their chemical composition is characterized by the presence of large `freeze out holes' in most molecular species. In contrast with these chemically processed objects, a new population of chemically young cores has begun to emerge. The characteristics of its most extreme representative, L1521E, are briefly reviewed.

Printing Options

Print whole paper
Print Page(s) through

Return 600 dpi PDF to Acrobat/Browser. Different resolutions (200 or 600 dpi), formats (Postscript, PDF, etc), page sizes (US Letter, European A4, etc), and compression (gzip,compress,none) can be set through the Printing Preferences



More Article Retrieval Options

HELP for Article Retrieval


Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)


Find Similar Abstracts:

Use: Authors
Title
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
Physics
arXiv e-prints