Sign on
ADS Classic is now deprecated. It will be completely retired in October 2019. This page will automatically redirect to the new ADS interface at that point.

SAO/NASA ADS Astronomy Abstract Service

· Find Similar Abstracts (with default settings below)
· Electronic On-line Article (HTML)
· Full Printable Article (PDF/Postscript)
· Scanned Article (GIF)
· arXiv e-print (arXiv:astro-ph/0603122)
· Table of Contents
· References in the Article
· Citations to the Article (11) (Citation History)
· Refereed Citations to the Article
· Also-Read Articles (Reads History)
· Translate This Page
Solar System binaries
Noll, Keith S.
Asteroids, Comets, Meteors, Proceedings of the 229th Symposium of the International Astronomical Union held in Búzios, Rio de Janeiro, Brasil August 7-12, 2005, Edited by D. Lazzaro, S. Ferraz-Mello & J.A. Fernández. Cambridge: Cambridge University Press, 2006., pp.301-318
Publication Date:
Bibliographic Code:


The discovery of binaries in each of the major populations of minor bodies in the solar system is propelling a rapid growth of heretofore unattainable physical information. The availability of mass and density constraints for minor bodies opens the door to studies of internal structure, comparisons with meteorite samples, and correlations between bulk-physical and surface-spectral properties. The number of known binaries is now more than 70 and is growing rapidly. A smaller number have had the extensive followup observations needed to derive mass and albedo information, but this list is growing as well. It will soon be the case that we will know more about the physical parameters of objects in the Kuiper Belt than has been known about asteroids in the Main Belt for the last 200 years. Another important aspect of binaries is understanding the mechanisms that lead to their formation and survival. The relative sizes and separations of binaries in the different minor body populations point to more than one mechanism for forming bound pairs. Collisions appear to play a major role in the Main Belt. Rotational and/or tidal fission may be important in the Near Earth population. For the Kuiper Belt, capture in multi-body interactions may be the preferred formation mechanism. However, all of these conclusions remain tentative and limited by observational and theoretical incompleteness. Observational techniques for identifying binaries are equally varied. High angular resolution observations from space and from the ground are critical for detection of the relatively distant binaries in the Main Belt and the Kuiper Belt. Radar has been the most productive method for detection of Near Earth binaries. Lightcurve analysis is an independent technique that is capable of exploring phase space inaccessible to direct observations. Finally, spacecraft flybys have played a crucial paradigm-changing role with discoveries that unlocked this now-burgeoning field.

Printing Options

Print whole paper
Print Page(s) through

Return 600 dpi PDF to Acrobat/Browser. Different resolutions (200 or 600 dpi), formats (Postscript, PDF, etc), page sizes (US Letter, European A4, etc), and compression (gzip,compress,none) can be set through the Printing Preferences

More Article Retrieval Options

HELP for Article Retrieval

Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)

Find Similar Abstracts:

Use: Authors
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
arXiv e-prints