Sign on
ADS Classic is now deprecated. It will be completely retired in October 2019. This page will automatically redirect to the new ADS interface at that point.

SAO/NASA ADS Astronomy Abstract Service


· Find Similar Abstracts (with default settings below)
· Electronic On-line Article (HTML)
· Full Printable Article (PDF/Postscript)
· Scanned Article (GIF)
· Table of Contents
· References in the Article
· Citations to the Article (6) (Citation History)
· Refereed Citations to the Article
· Reads History
·
· Translate This Page
Title:
Trans-Neptunian objects' surface properties
Authors:
Barucci, M. A.; Peixinho, N.
Publication:
Asteroids, Comets, Meteors, Proceedings of the 229th Symposium of the International Astronomical Union held in Búzios, Rio de Janeiro, Brasil August 7-12, 2005, Edited by D. Lazzaro, S. Ferraz-Mello & J.A. Fernández. Cambridge: Cambridge University Press, 2006., pp.171-190
Publication Date:
00/2006
Origin:
CUP
DOI:
10.1017/S1743921305006733
Bibliographic Code:
2006IAUS..229..171B

Abstract

Recent observations in visible photometry have provided B, V, R and I high quality colors for more than 130 objects. Color diversity is now a reality in the TNOs population. Relevant statistical analyses have been performed and all possible correlations between optical colors and orbital parameters have been analyzed. A taxonomy scheme based on multivariate statistical analysis of a subsample of 51 objects described by the 4 color indices (B-V, V-R, V-I and V-J) has been obtained. A tentative interpretation of the obtained groups in terms of surface characteristics is given. Moreover, an extension of this taxonomy to the other 84 objects for which only three colors indices (B-V, V-R, and V-I) are available, is also presented.The faintness of these objects limits the spectroscopic observations. Despite this, our group provided visible and infrared spectra for 18 objects using the Very Large Telescope (ESO, Paranal, Chile). The wavelength region ranging 0.4-2.3 microns encompasses diagnostic spectral features to investigate organic compounds, minerals and ices present on the surface of the TNOs. The investigation of the surface variation can be an identifier of possible composition diversity and/or different evolution with different physical processes affecting the surface.The current knowledge of the surface properties and composition of the population will be presented, analyzed and interpreted.

Printing Options

Print whole paper
Print Page(s) through

Return 600 dpi PDF to Acrobat/Browser. Different resolutions (200 or 600 dpi), formats (Postscript, PDF, etc), page sizes (US Letter, European A4, etc), and compression (gzip,compress,none) can be set through the Printing Preferences



More Article Retrieval Options

HELP for Article Retrieval


Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)


Find Similar Abstracts:

Use: Authors
Title
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
Physics
arXiv e-prints