Sign on

SAO/NASA ADS Astronomy Abstract Service

· Find Similar Abstracts (with default settings below)
· Electronic On-line Article (HTML)
· Full Printable Article (PDF/Postscript)
· Scanned Article (GIF)
· Table of Contents
· References in the Article
· Citations to the Article (8) (Citation History)
· Refereed Citations to the Article
· Reads History
· Translate This Page
Nearby regions of massive star formation
Bally, John; Cunningham, Nathaniel; Moeckel, Nickolas; Smith, Nathan
Massive star birth: A crossroads of Astrophysics, IAU Symposium Proceedings of the international Astronomical Union 227, Held 16-20 May, Italy, edited by Cesaroni, R.; Felli, M.; Churchwell, E.; Walmsley, M. Cambridge: Cambridge University Press, 2005., pp.12-22
Publication Date:
Bibliographic Code:


Observations of the nearest regions of massive star formation such as Orion are reviewed. Early-type stars in the local OB associations, as well as their superbubbles and supershells provide a fossil record of massive star birth in the Solar vicinity over about the last 40 Myr. This record shows that most massive stars are born from dense, high-pressure, hot cores which spawn transient clusters that dissipate into the field soon after formation. A large fraction (15 to 30%) of massive stars are high-velocity runaways moving at more than 20 km s^{-1}. High-mass stars have a larger companion fraction than their lower-mass siblings. The Orion star forming complex contains the nearest site of on-going massive star formation. Studies of the Orion Nebula and the dense molecular cloud core located immediately behind the HII region provide our sharpest view of massive star birth. This region has formed a hierarchy of clusters within clusters. The Trapezium, OMC-1S, and OMC-1 regions represent three closely spaced sub-clusters within the more extended Orion Nebula Cluster. The oldest of these sub-clusters, which consists of the Trapezium stars, has completely emerged from its natal core. The OMC-1S and OMC-1 regions, are still highly embedded and forming clusters of additional moderate and high mass stars. Over a dozen YSOs embedded in OMC-1S are driving jets and outflows, many of which are injecting energy and momentum into the Orion Nebula. Recent proper motion measurements indicate that the Becklin-Neugebauer object is a high-velocity star moving away from the OMC1 core with a velocity of 30 km s^{-1}, making it the youngest high-velocity star known. Source I may be moving in the opposite direction with a velocity of about 12 km s^{-1}. The projected separation between source I and BN was less than few hundred AU about 500 years ago. The spectacular bipolar molecular outflow and system of shock-excited H_2 fingers emerging from OMC-1 has a dynamical age of about 1100 years. It is possible that a dynamical i nteraction between three or more stars in OMC-1 led to the formation of this eruptive outflow.

Printing Options

Print whole paper
Print Page(s) through

Return 600 dpi PDF to Acrobat/Browser. Different resolutions (200 or 600 dpi), formats (Postscript, PDF, etc), page sizes (US Letter, European A4, etc), and compression (gzip,compress,none) can be set through the Printing Preferences

More Article Retrieval Options

HELP for Article Retrieval

Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)

Find Similar Abstracts:

Use: Authors
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
arXiv e-prints