Sign on
ADS Classic is now deprecated. It will be completely retired in October 2019. This page will automatically redirect to the new ADS interface at that point.

SAO/NASA ADS Astronomy Abstract Service

· Find Similar Abstracts (with default settings below)
· Full Printable Article (PDF/Postscript)
· Scanned Article (GIF)
· Table of Contents
· References in the Article
· Citations to the Article (4) (Citation History)
· Refereed Citations to the Article
· Reads History
· Translate This Page
Research on Historical Records of Geomagnetic Storms
Lakhina, G. S.; Alex, S.; Tsurutani, B. T.; Gonzalez, W. D.
Coronal and Stellar Mass Ejections, IAU Symposium Proceedings of the International Astronomical Union 226, Held 13-17 September, Beijing, edited by K. Dere, J. Wang, and Y. Yan. Cambridge: Cambridge University Press, 2005., pp.3-15
Publication Date:
Bibliographic Code:


In recent times, there has been keen interest in understanding Sun-Earth connection events, such as solar flares, CMEs and concomitant magnetic storms. Magnetic storms are the most dramatic and perhaps important component of space weather effects on Earth. Super-intense magnetic storms (defined here as those with Dst < -500 nT, where Dst stands for the disturbance storm time index that measures the strength of the magnetic storm) although relatively rare, have the largest societal and technological relevance. Such storms can cause life-threatening power outages, satellite damage, communication failures and navigational problems. However, the data for such magnetic storms is rather scarce. For example, only one super-intense magnetic storm has been recorded (Dst=-640 nT, March 13, 1989) during the space-age (since 1958), although such storms may have occurred many times in the last 160 years or so when the regular observatory network came into existence. Thus, research on historical geomagnetic storms can help to create a good data base for intense and super-intense magnetic storms. From the application of knowledge of interplanetary and solar causes of storms gained from the spaceage observations applied to the super-intense storm of September 1-2, 1859, it has been possible to deduce that an exceptionally fast (and intense) magnetic cloud was the interplanetary cause of this geomagnetic storm with a Dst -1760 nT, nearly 3 times as large as that of March 13, 1989 super-intense storm. The talk will focus on super-intense storms of September 1-2, 1859, and also discuss the results in the context of some recent intense storms.

Printing Options

Print whole paper
Print Page(s) through

Return 600 dpi PDF to Acrobat/Browser. Different resolutions (200 or 600 dpi), formats (Postscript, PDF, etc), page sizes (US Letter, European A4, etc), and compression (gzip,compress,none) can be set through the Printing Preferences

More Article Retrieval Options

HELP for Article Retrieval

Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)

Find Similar Abstracts:

Use: Authors
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
arXiv e-prints