Sign on
ADS Classic is now deprecated. It will be completely retired in October 2019. This page will automatically redirect to the new ADS interface at that point.

SAO/NASA ADS Astronomy Abstract Service


· Find Similar Abstracts (with default settings below)
· Electronic Refereed Journal Article (HTML)
· Full Refereed Journal Article (PDF/Postscript)
· References in the article
· Also-Read Articles (Reads History)
·
· Translate This Page
Title:
Waves in a warm pair plasma: a relativistically complete two-fluid analysis
Authors:
Keppens, Rony; Goedbloed, Hans; Durrive, Jean-Baptiste
Affiliation:
AA(), AB(), AC()
Publication:
Journal of Plasma Physics, Volume 85, Issue 4, article id. 905850408, 28 pp.
Publication Date:
08/2019
Origin:
CUP
Keywords:
astrophysical plasmas, complex plasmas, plasma waves
Abstract Copyright:
(c) 2019: © Cambridge University Press 2019
DOI:
10.1017/S0022377819000552
Bibliographic Code:
2019JPlPh..85d9008K

Abstract

We present an ideal two-fluid wave mode analysis for a pair plasma, extending an earlier study for cold conditions to the warm pair plasma case. Starting from the completely symmetrized means for writing the governing linearized equations in the pair fluid rest frame, we discuss the governing dispersion relation containing all six pairs of forward and backward propagating modes, which are conveniently labelled as S, A, F, M, O and X. These relate to the slow (S), Alfvén (A) and fast (F) magnetohydrodynamic waves, include a modified (M) electrostatic mode, as well as the electromagnetic O and X branches. In the dispersion relation, only two parameters appear, which define the pair plasma magnetization E2\in [0,\infty ] and the squared pair plasma sound speed v2 , measured in units of the light speed c . The description is valid also in the highly relativistic regime, where either a high magnetization and/or a relativistic temperature (hence sound speed) is reached. We recover the exact relativistic single-fluid magnetohydrodynamic expressions for the S, A and F families in the low wavenumber-frequency regime, which can be obtained for any choice of the equation of state. We argue that, as in a cold pair plasma, purely parallel or purely perpendicular propagation with respect to the magnetic field vector \boldsymbol{B} is special, and near-parallel or near-perpendicular orientations demonstrate avoided crossings of branches at computable wavenumbers and frequencies. The complete six-mode phase and group diagram views are provided as well, visually demonstrating the intricate anisotropies in all wave modes, as well as their transformations. Analytic expressions for all six wave group speeds at both small and large wavenumbers complement the analysis.
Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)


Find Similar Abstracts:

Use: Authors
Title
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
Physics
arXiv e-prints