Sign on
ADS Classic is now deprecated. It will be completely retired in October 2019. This page will automatically redirect to the new ADS interface at that point.

SAO/NASA ADS Astronomy Abstract Service


· Find Similar Abstracts (with default settings below)
· Electronic Refereed Journal Article (HTML)
· Full Refereed Journal Article (PDF/Postscript)
· arXiv e-print (arXiv:1802.05503)
· References in the article
· Citations to the Article (2) (Citation History)
· Refereed Citations to the Article
· Also-Read Articles (Reads History)
·
· Translate This Page
Title:
Energy cascade rate in isothermal compressible magnetohydrodynamic turbulence
Authors:
Andrés, N.; Sahraoui, F.; Galtier, S.; Hadid, L. Z.; Dmitruk, P.; Mininni, P. D.
Affiliation:
AA(Laboratoire de Physique des Plasmas, École Polytechnique, CNRS, Sorbonne University, Observatoire de Paris, Univ. Paris-Sud, F-91128 Palaiseau CEDEX, France), AB(Laboratoire de Physique des Plasmas, École Polytechnique, CNRS, Sorbonne University, Observatoire de Paris, Univ. Paris-Sud, F-91128 Palaiseau CEDEX, France), AC(Laboratoire de Physique des Plasmas, École Polytechnique, CNRS, Sorbonne University, Observatoire de Paris, Univ. Paris-Sud, F-91128 Palaiseau CEDEX, France), AD(Swedish Institute of Space Physics, Uppsala, Sweden), AE(Instituto de Física de Buenos Aires, CONICET-UBA, Ciudad Universitaria, 1428, Buenos Aires, Argentina), AF(Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428, Buenos Aires, Argentina)
Publication:
Journal of Plasma Physics, Volume 84, Issue 4, article id. 905840404, 21 pp.
Publication Date:
08/2018
Origin:
CUP
Keywords:
plasma nonlinear phenomena, plasma simulation, space plasma physics
Abstract Copyright:
(c) 2018: © Cambridge University Press 2018
DOI:
10.1017/S0022377818000788
Bibliographic Code:
2018JPlPh..84d9004A

Abstract

Three-dimensional direct numerical simulations are used to study the energy cascade rate in isothermal compressible magnetohydrodynamic turbulence. Our analysis is guided by a two-point exact law derived recently for this problem in which flux, source, hybrid and mixed terms are present. The relative importance of each term is studied for different initial subsonic Mach numbers S$ and different magnetic guide fields 0$ . The dominant contribution to the energy cascade rate comes from the compressible flux, which depends weakly on the magnetic guide field 0$ , unlike the other terms whose moduli increase significantly with S$ and 0$ . In particular, for strong 0$ the source and hybrid terms are dominant at small scales with almost the same amplitude but with a different sign. A statistical analysis undertaken with an isotropic decomposition based on the SO(3) rotation group is shown to generate spurious results in the presence of 0$ , when compared with an axisymmetric decomposition better suited to the geometry of the problem. Our numerical results are compared with previous analyses made with in situ measurements in the solar wind and the terrestrial magnetosheath.
Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)


Find Similar Abstracts:

Use: Authors
Title
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
Physics
arXiv e-prints