Sign on

SAO/NASA ADS Astronomy Abstract Service

· Find Similar Abstracts (with default settings below)
· Electronic Refereed Journal Article (HTML)
· Also-Read Articles (Reads History)
· Translate This Page
The IBEX-Lo Sensor
Fuselier, S. A.; Bochsler, P.; Chornay, D.; Clark, G.; Crew, G. B.; Dunn, G.; Ellis, S.; Friedmann, T.; Funsten, H. O.; Ghielmetti, A. G.; Googins, J.; Granoff, M. S.; Hamilton, J. W.; Hanley, J.; Heirtzler, D.; Hertzberg, E.; Isaac, D.; King, B.; Knauss, U.; Kucharek, H.; Kudirka, F.; Livi, S.; Lobell, J.; Longworth, S.; Mashburn, K.; McComas, D. J.; Möbius, E.; Moore, A. S.; Moore, T. E.; Nemanich, R. J.; Nolin, J.; O'Neal, M.; Piazza, D.; Peterson, L.; Pope, S. E.; Rosmarynowski, P.; Saul, L. A.; Scherrer, J. R.; Scheer, J. A.; Schlemm, C.; Schwadron, N. A.; Tillier, C.; Turco, S.; Tyler, J.; Vosbury, M.; Wieser, M.; Wurz, P.; Zaffke, S.
AA(Lockheed Martin Advanced Technology Center), AB(Physikalisches Institut, University of Bern), AC(Goddard Space Flight Center), AD(University of New Hampshire), AE(MIT Kavli Institute for Astrophysics and Space Research), AF(Southwest Research Institute), AG(University of New Hampshire), AH(Sandia Laboratory, Mail Stop 1415), AI(ISR Division MS B241, Los Alamos National Laboratory), AJ(Lockheed Martin Advanced Technology Center), AK(University of New Hampshire), AL(University of New Hampshire), AM(Lockheed Martin Advanced Technology Center), AN(Southwest Research Institute), AO(University of New Hampshire), AP(Lockheed Martin Advanced Technology Center), AQ(Lockheed Martin Advanced Technology Center), AR(University of New Hampshire), AS(University of New Hampshire), AT(University of New Hampshire), AU(University of New Hampshire), AV(University of New Hampshire), AW(Goddard Space Flight Center), AX(University of New Hampshire), AY(Montana State University), AZ(Southwest Research Institute), BA(University of New Hampshire), BB(Lockheed Martin Advanced Technology Center), BC(Goddard Space Flight Center), BD(University of Arizona), BE(University of New Hampshire), BF(University of New Hampshire), BG(Physikalisches Institut, University of Bern), BH(University of New Hampshire), BI(Southwest Research Institute), BJ(Goddard Space Flight Center), BK(Physikalisches Institut, University of Bern), BL(Southwest Research Institute), BM(Physikalisches Institut, University of Bern), BN(Applied Physics Laboratory, Johns Hopkins University), BO(Boston University), BP(Lockheed Martin Advanced Technology Center), BQ(University of New Hampshire), BR(University of New Hampshire), BS(University of New Hampshire), BT(Swedish Institute of Space Physics), BU(Physikalisches Institut, University of Bern), BV(University of New Hampshire)
Space Science Reviews, Volume 146, Issue 1-4, pp. 117-147 (SSRv Homepage)
Publication Date:
Neutral atom imaging, Heliosphere, Termination shock, Energetic neutral atoms, Magnetosphere, Surface ionization
Bibliographic Code:


The IBEX-Lo sensor covers the low-energy heliospheric neutral atom spectrum from 0.01 to 2 keV. It shares significant energy overlap and an overall design philosophy with the IBEX-Hi sensor. Both sensors are large geometric factor, single pixel cameras that maximize the relatively weak heliospheric neutral signal while effectively eliminating ion, electron, and UV background sources. The IBEX-Lo sensor is divided into four major subsystems. The entrance subsystem includes an annular collimator that collimates neutrals to approximately 7°×7° in three 90° sectors and approximately 3.5°×3.5° in the fourth 90° sector (called the high angular resolution sector). A fraction of the interstellar neutrals and heliospheric neutrals that pass through the collimator are converted to negative ions in the ENA to ion conversion subsystem. The neutrals are converted on a high yield, inert, diamond-like carbon conversion surface. Negative ions from the conversion surface are accelerated into an electrostatic analyzer (ESA), which sets the energy passband for the sensor. Finally, negative ions exit the ESA, are post-accelerated to 16 kV, and then are analyzed in a time-of-flight (TOF) mass spectrometer. This triple-coincidence, TOF subsystem effectively rejects random background while maintaining high detection efficiency for negative ions. Mass analysis distinguishes heliospheric hydrogen from interstellar helium and oxygen. In normal sensor operations, eight energy steps are sampled on a 2-spin per energy step cadence so that the full energy range is covered in 16 spacecraft spins. Each year in the spring and fall, the sensor is operated in a special interstellar oxygen and helium mode during part of the spacecraft spin. In the spring, this mode includes electrostatic shutoff of the low resolution (7°×7°) quadrants of the collimator so that the interstellar neutrals are detected with 3.5°×3.5° angular resolution. These high angular resolution data are combined with star positions determined from a dedicated star sensor to measure the relative flow difference between filtered and unfiltered interstellar oxygen. At the end of 6 months of operation, full sky maps of heliospheric neutral hydrogen from 0.01 to 2 keV in 8 energy steps are accumulated. These data, similar sky maps from IBEX-Hi, and the first observations of interstellar neutral oxygen will answer the four key science questions of the IBEX mission.
Bibtex entry for this abstract   Preferred format for this abstract (see Preferences)


Find Similar Abstracts:

Use: Authors
Keywords (in text query field)
Abstract Text
Return: Query Results Return    items starting with number
Query Form
Database: Astronomy
arXiv e-prints